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Mean-field behavior of cluster dynamics

N. Persk37
Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel

R. Ben-AV and I. Kantef
Department of Physics, Bar-llan University, Ramat-Gan 52100, Israel

E. Domany
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
(Received 19 March 1996

The dynamic behavior of cluster algorithms is analyzed in the classical mean-field limit. Rigorous analytical
results belowT . establish that the dynamic exponent has the valyg=1 for the Swendsen-Wang algorithm
andzy,= 0 for the Wolff algorithm. An efficient Monte Carlo implementation is introduced, adapted for using
these algorithms for fully connected graphs. Extensive simulations both above and Teldemonstrate
scaling and evaluate the finite-size scaling function by means of a rather impressive collapse of the data.
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[. INTRODUCTION A wide variety of cluster methods have been applied suc-
cessfully to many fields in physi¢second-order phase tran-
In a series of seminal pioneering papers Fortuin anditions, disordered and frustrated systems, quantum field
Kasteleyn[1] established an important connection betweertheories, fermions in a gauge background, quantum gravity,
percolation problems and the related concept of clusters, oand morgf4—11]). In many cases a dramatic acceleration of
the one hand, and various thermodynamic functions of Pottsonvergence to equilibrium was achieved. That is, if the
spin models, on the other. These connections allow geomesimulation of a system oflinean sizeL is performed at the
ric interpretation of different properties of these systems thagritical point, the relaxation time behaves according to
play a central role in their critical behavior. For example, ther~L? wherez., the exponent associated with the cluster
onset of spontaneous magnetization coincides with the aglgorithm is significantly less thaz,, of the local methods.
pearance of an infinite cluster in the related percolation prob- So far only relatively few rigorous results have been de-
lem; the susceptibility is proportional to the mean cluster sizeived for cluster algorithms and the associated relaxation
and the correlation length to a typical cluster’s radius. times and exponentg4,6]. In this paper we consider the
Some years later Swendsen and Wdad used these well-known version of the Ising spin model for which the
ideas in a way that constituted a breakthrough in a differenmean field is the exact solution, that dbf—o spins, all
subfield of statistical physics: that of computer simulationsconnected to each other. By analyzing this system one can
of systems in thermal equilibrium. They exploited the calculate the classical, mean-field valuezgf
Fourtuin-Kasteleyn mapping to define a very efficient Monte The mean-field Ising ferromagnet has been previously ex-
Carlo algorithm that performs large-scale nonlocal moves byamined analytically and numerically by Ray, Tamayo, and
flipping simultaneously entire clusters of spins. This dynamKlein (RTK) [4]. Although the work presented here agrees
ics decreases the relaxation time to equilibrium while prewith the conclusions of RTK regarding the Swendsen-Wang
serving detailed balance and ergodicity. In this way one cafSW) dynamics, it contains some improvement. First, the
overcome(or at least significantly redugeritical slowing  derivation of the analytical results is improved by employing
down at second-order phase transitig8$ “Critical slow-  the known exact results of Erdand Reny{12] for highly
ing down” is a well-known phenomenon; the relaxation time diluted random graphs instead of the approximatissed by
of a system diverges as the critical point is approached. ThRTK) of a Bethe lattice with large coordination number. We
manifestation of thigeal, physicaleffect on simulations is show that this technical improvement does not alter the re-
that at criticality the typical time needed to produce a largesults obtained4] for SW dynamics. Second, we performed
set of decorrelated configurations, which appear with thesimulations, introducing an efficient algorithm, that extend
proper Boltzmann weight, diverges with the system’s sizethose of RTK in the following aspects. RTK looked at the
Hence the standard local Metropolis-type Monte Carlo simu+elaxation timesr of the magnetization autocorrelation func-
lation methods become inefficient. tion, measured at a single temperaturie, ©f the infinite
system versus the size of the system. In addition, they also
studied the temperature dependence bélow T, at a single

*Electronic address: nathanp@vms.huji.ac.il value of the system size. Our simulations were done on
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finite-size scaling; the relaxation times measured at variousmall and the SW procedure generates precisely the highly

temperatures and system sizes are presented using data adiluted graphs to which we now turn.

lapse, thereby also calculating numerically the corresponding Consider a graph dfl nodes; on all links connecting pairs

finite-size scaling function. This data collapse of course takesf nodesi,j place independent random variablgs, taken

into account the shift in the transition temperature as a funcfrom the probability distribution

tion of the size of the system. It resolves the unexpected

result that RTK found puzzling, namely, that the slowing P(Jij)=(1—c/N)&(Ji;) +(c/N)8(J;;— 1), (€)

down below the transition appeared to be enhanced in com-

parison to that at the transition. When the shift in the transiwhere the average connectivityis taken to beO(1). The

tion temperature is properly accounted for, this effect disapresulting highly diluted graph has finite connectivity; in the

pears. thermodynamic limit the probability that a node has connec-
In addition, we present analytical and numerical resultdivity k (i.e., has nonvanishing link variablég with k other

for Wolff [11] dynamics with the conclusion that the relax- nodes follows the Poisson distribution

ation times of the autocorrelation function depends on the "

details of the global algorithm. However, the upper critical P(k)=c"exp(—c)/k!.

dimension is hypothesized to be unaffected by the details of

the local or the global algorithm. Many geometric properties of this diluted graph are well

understood 12,14,19. In particular, the graph undergoes a
percolation transition at=1. That is, the number of nodes
that belong to the largest connected cluster i©@bgN) for
The Hamiltonian of the fully connected Ising model is <1, O(N?®) atc=1, andO(N) for c>1. In this percolat-
defined by ing regime the size of the largest clustergbl, where the
parameteq is the solution of the equatigri4]

1. MODEL

1
H=—>=> SS,, S==1. (1) g=1-e %9
2Nif=1
. . . . . Or
The statics of this model is solved exactly, using a mean field
[13]. The result is a second-order phase transitiogat 1, In(1—g)=cg.

with exponentse=0, »=0.5, 8=0.5, andy=1. The local
(single spin flip dynamics of this model can also be solved Assuming that for=1+ & and §<1 one hag<1, we get
exactly using a mean-field approach resultingfiom here

we useB=1/KT unless otherwise stated cg—g—g%2—g33=0
7(B)*(B—B.) L. and therefore
Using the fact that=0.5[i.e., éx(B8— B,) Y2, it is clear 29%+3g—66=0,

that 7o< £2, giving
which yields
Zjocal= 2.
g(1+6)=26— 8 62 (4

The standard SW procedure as implemented for this
model is defined as follows. Let us assume that the system is After this aside on random dilute graphs we return to the
in a spin configuratiodS}, i=1, ... N. In each SW sweep SW dynamics for our fully connected Ising spin model.
every bond is “activated(or frozen with probability Since the spins are fully connected, a configuration is fully

parametrized byN , , the number of positive valued spins, or
P = 1—exp< B §(1+Sisj))- @ by its magnetization

m=(N,—N_)/N,
A bond that is not frozen is called “deleted.” Frozen bonds o
define connected clusters, to each of which a spin valu&hereN_=N-—N. . The dynamics is therefore completely
(=1) is now assigned randomly, giving rise to the new spincharacterized by specifying the value of either or m after
configuration. Then the procedure is repeated. The dynamicAch Monte Carlo sweep. Every SW sweep can be thought of
of this SW procedure was studied for the fully connected®S consisting of two steps. In the first step the spins are
model by Ray, Tamaya, and Klei], who showed that divided into two groups, one of positive spifell the spins
Zow=1. with §=+1) and the other negativspins withS=—1).

We present now a different derivation of this result: oneUsing P of (2) we first note that all the links connecting any
which utilizes exact results from graph theory. In order to get?0sitive spin to any negative one are deleted. The positive
better insight into the percolation properties of the fully con-(negative group contains
nected model let us introduce a few previously known facts
about highly diluted graphgl2]. These are relevant to our

N
; . - . N.==(1xm)
problem since foN>1 the freezing probability; is very 2
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spins. Without loss of generality, we assume that m, -
N,>N_. m|+1=T[2(—t+m|—tm|)—g(m|—tm|)]
In the second step, each group is examined independently.
The internal links within a group are activated with the prob- =m—t+ Zmt—im?, (10)
ability P;=1—exp(~28/N). Each group can be thought of
now as a random graph with effective connectivity which leads to the differential form
28N dm
C.=PiN.~ BN =3 (5) Wz—t%—%m,t—%mf (12)

Denoting byt the deviation from criticality3=1—t (recall ~ Wherel, the discrete index of the sweep, has become a con-

that B.=1), we can write for the largefpositive) group of  tinuous “time.” For t<0 Eq.(11) has a stationary point at
spins

m*=(—3t)Y2 (12)
cy=(1-t)(1+m). 6)  Near this point we write
We can now view the act of freezing a bond as choosing m=m*+e

Jij=1 in the generation of the dilute graph discussed above.
For that problem, as was mentioned previously:1 is a  and linearize Eq(11) in e:
critical value. Therefore, in the disordered phase of our spin
modelt>0 and B8< g, so that bothc, ,c_<1 and the SW —=Z2Zet—2me=2et— ie(_t)uz_ (13)
freeze-delete procedure creates only srr@hmacroscopijc dl V3
clusters. On the other hand, at temperatures just below criti- 1o ) )
cality, i.e., whent<0, we havec,>1 butc_<1. Hence For |t|<1 the (—t)“term is dominant so one can conclude
only onemacroscopic clustefof positive sping whose size that relaxation is dominated by
is proportional to the lattice size, is generated, while the rest 2
of the clusters are small. socex;{ — / (_(_t)UZ)

Flipping of this single macroscopic cluster is the domi- 3
nant element of the dynamics. The rest of the clusters are . ' S
small—there areO(N) of them—and therefore the extent and therefore in the ordered phase we find the relaxation time
that their flip influences the magnetization is negligible com- 3

SW

pared to that of the large cluster. T =7(—t)*1’2. (14

In what follows we derive recursion fdx', andm, the
v_aIugs that the number of the majority spins and the magngysing the definition
tization take aftett steps of the SW procedure. We use the
notationN ., , but mean the number of spins in the state with T=(—1)" "2
majority (even when they are negatjve

The small clusters become1 with probability 1/2 after a  Yields our result for the mean-field value of the dynamic
sweep: neglecting fluctuations of their contribution and as€xponent of the Swendsen-Wang procedure
suming that the single large spanning cluster was and re-

mains positive, we can write Zgw=1.
NI BN+ 2N N gle T+ NLg(e), () Il NUMERICAL RESULTS
A. Algorithm
I+1__ | | |
NT =3 NL+ 2 [NL —NLg(c,)]. (8) The standard versiof2] of the SW algorithm visits, dur-

ing a single sweep, each bond once and takes a freeze or

Denotingn;=N',/N, Egs.(7) and (8) can be rewritten as a delete decisio16]. The fully connected systeffiEq. (1)]
recursion for the magnetization: containsN spins andN(N—1)/2 links; consequently the
usual SW algorithm require®©(N?) operations for one
sweep of the system. For our choice Bf [Eq. (2)], how-

ever, only a very small fraction of bonds is eventually fro-
zen: even though every spin h@gN) links, only O(1) are

For simplicity we keepm positive (or, in other words, our activated. Moreover, as explained in the Introduction, in the

1+m|
m|+1=n|g(2ﬁn|)=Tg[(l—t)(l+m|)]. 9

recursion is actually fofm|). fully connected model the only relevant parameter that de-
Near the transition the argument of the functipis near  termines the system’s state is its magnetization,Nar.
its critical value and we can identif§ [see Eq.4)] by Hence, to get the new configuratiafter the SW sweep, all
we have to determine is the new valueNf . To do this we
S=—t+m—tm,. do not have to scan alD(N) bonds of a certain spin; rather,

when the algorithm “visits” a new spin that belongs to a
Equation(4) is now given(up to terms of ordet®?) by cluster, it suffices to use the binomial distribution to deter-
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mine the number of activated bonds it Has., the number finite systems of linear size. Denote byt the reduced tem-
of new members of the cluser perature variable and b# a thermodynamic quantity that

Therefore the SW algorithm can be implemented for theexhibits singular behavior in the—c limit, characterized
fully connected model by manipulating a fewsmbersin- by the exponen®:
stead of the values taken by the spins. This approach simpli-
fies the algorithm, is much more efficient, and uses a very Boct ™", (16)
small memory. . . . .

We adopted the spirit of the Wolff algorithm to grow all For a finite system clearljs is an analytic function of and
SW clusters during a sweep. At a given moment we knowfhe finite-size scaling funcnon exhlb|t§ a crossover; when
the number of spins that have been assigned to our presenf/ch that the correlation length~t~" is much smaller than
growing cluster. New spins that have been added to the clughe system size the function behaves lik¢16); in the
ter have to be tested for the number of frozen bonds conneck— limit all dependence o should disappear. On the
ing them tofree spins(that do not yet belong to any cluster _other hand, foé<L the finite-size effects wipe the singular-
and have the same sign as the presently growing cluster af@f Out. ] .
hence are candidates for joining iThe spins that are known ~ The scaling hypothesi§17] asserts that the crossover
to belong to the cluster but have not yet been tested are in ¥aling function depends dnonly through the ratid./£ and
“stack.” As a cluster is growing, the algorithm tracks and One expects the form
modifies the following parameterst., the number of spins , )
in the growing clusterNg the number of spin in the stack; B(t,L)=L"f(LIg)=¢""g(L/¢). (17)

andN; the number of *free spins.” A SW sweep starts at a rps scajing form includes implicitly the finite-size shift of

configuration withN,_ "up” spins and N “down" spins. T¢(L), which is defined by the temperature at which the

Say we start to generate clusters of the up spins. The fOIIOV"r'neasured quantity has a peak. The size of this shift generally
ing steps are taken.

; . . . has the f

(i) Assign one spin to the growing cluster: set as the form
Ne=Ns=1andN;=N,~1.= U | Te(L) = Te(o0) oL (18)

(i) Test the spin: that is, using the binomial distribution,
determineN,qq, the number of frozen links our spin will get, The specific scaling functions that we consider in this paper
connecting it to presently free spins: are, for the susceptibility,

x(t,L)=L""f(tLY) (19

N
Prob(Nagg = ( fd) Padq 1 — P )Ni~Nagg (15)

N
ad and, for the relaxation time,
(iii) Update z v
Nc:Nc+Naddi T(t,L)—L f(tL ) (20)
Ng=Ng+ Ny 1,
N¢=N¢—Ngqq- C. Details of the simulations

. (iv) Perfo__rm gnothe_r tedas Iong asNs>0) using step The Monte Carlo simulations were carried out with the
(iD). R_epeat(u)—(lv) until the stack is emptyNs=0). Con- algorithm described above, for systems that contain
struction of the cluster has now been completed. N=10"—(3%x10°) spins. The number of Monte Carlo

. (v) Flip the cluster with pmb"."b'“.%' If the clgster has sweeps per spin was 10The first 16 configurations of the
flipped, the value of the magnetization changes: simulation(at list 500 times the relaxation time itseifiere

M —M—2N,. d_iscarded in order to ensure that the system reached equilib-
rium.
(vi) ResetN.=1, Ng=1, andN;=N;— 1 and repeatii)— The static equilibrium property that we measured was
(vi) to construct new clusters, until there are no more free
spins (N;=0). X' =BN(m?) —([m])?), (21)

(vii) Go to the second compone(af down spin$ and which is proportional to the “real” susceptibility [7]. The

apply (i)—(vi) with N_ . Note that now when the cluster flips reason for this choice is that in finite systems, especially with

the magnetizatioincreasesby 2N, . : e 2\ 2
Note that all the operations of our algorithm are on a fewCIUSter dynamics, the quantigmn®) —(m)" has no peak at all

. e .~ "and the measured value increases monotonicallyl ake-
numbersnamely, we do not really define spins, just manipu- reases. The reason is that chanaes sian frequently and
late a few counters that were defined above. For the Wolf ) 9 9 d y

version one can apply the same algorithm and grow only theherefore( m)~0. The method that determingsby measur-

first cluster; the decision of starting it from an up or down Ing the size of the SW clustef41] also yields no peak.

. . . - : To demonstrate the quality of our numerical data we
tScI)O 'tr;]:Snﬁﬁfg elrs O?PJ‘; :rt ;%wr?'g;g]gmbabmw proportional present in Fig. 1 the susceptibiliy, as obtained from simu-

lations and exact evaluation for a systeniN\sf 20 000 spins.

The exact result was derived by calculatifrg®) and(|m|)

in (21), using the analytic expressions for the Boltzmann and
Finite-size scaling is a standard metHdd,1§ to extract  entropic weights of all configurations witi, up spins(and

critical indices from numerical data obtained by simulatingsumming ovemN ).

B. Finite-size scaling analysis
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FIG. 1. Susceptibilityy vs B for a system ofN=20 000 spins.
The solid line and squares represent exact results and the valu
obtained by simulations, respectively.

FIG. 3. Susceptibility scaling functiofEg. (19)]. The mean-
fidld value ofy/v=2 was used for collapsing the data of Fig. 2.

sweep. We considered the normalized correlation function of
Figure 2 shows the susceptibility for different systemthe absolute value of the magnetization
sizesL as a function of temperature. One can see the large
shift of the peak position for different sizes of the system. ~{(Im(t")m(t" +t)])—(|m[)?
The most striking manifestation of scaling dgata col- p(t)= ()2 : (22)
lapse The product yL™”” should depend only on
L/é~L\AB, where AB=8—1. This can be seen very forwhich the integrated relaxation time, defined by
clearly in Fig. 3, where the mean-field exponepts=2 and

v=1/2 were usedwe plotted the scaling function versus so=1 +E (t) 23)
(L/€)?]. In addition to presenting the scaling function and R Pt

verification of the scaling form, the excellent data collapse

that can be seen verifies the accuracy of our numerical simyas calculated.

lations. The shift of the effectiv& (L) is studied in Fig. 4; Figure 5 showsr for different sizes of the system at vari-
indeed one can see that the size of the shift agrees very wells temperatures. As in the case of the susceptibility, one
with Eq. (18), with the theoretical mean field value= 3. can see the large shift of the peak of the scaling function for

The dynamic property that we measured is the timedifferent system sizes. Figure 4 contains also the scaling
dependent correlation function of the absolute value of thénalysis of this shift as a function df: again, the result
magnetization. The measurements were taken after eveggrees very well with the theoretical prediction. Note that,

300.0 , ; . i ot {
x 300k 0.01 ¢ 1v=198 |
x v 160k 0.008 + oy 4
2500 ) 2 100k] i 1v=201 |
x + 70k
x w o 40K ] 0.006 - ‘
200.0 % o 20K x| |
v o 10k Aﬂ“
X 1500 | x ] 0.004 | ]
x BK @)
. 0.003 | 1
100.0 + x A‘}& |
ot
X+ DDE@D
50.0 | , +X 20 %VD%%O ] 0.002 - i
N . ‘ . . . ‘ ‘
L oeoer e s o, Mo i 20 2 2
0.0 L L 1 il
0.96 0.98 1.00 1.02 1.04
B FIG. 4. Shift of the peald gM*= ML) —1 of the susceptibil-

ity x and of the integrated relaxation time plotted versus
FIG. 2. Susceptibilityy versusp for different system sizes, L=NY% The nonlinear least-squares fit yielded the values
measured in the vicinity of the bulk critical temperatyg=1. 1/v=1.98+0.12 for y and 1k»=2.01+0.05 for 7.
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IV. WOLFF DYNAMICS

g ;?ggt Let us start with a remark about SW dynamics. Going
20.0 | % » 100k | back to Eq.(8) one can see that for a particular version of
; + 70k SW algorithm, in which one flips only the spanning cluster,
% Zggt the following equations are obtained:
Va,
T 4 N =N, —Ng(c.), (24)
100 | XA;@ fm ] N 1=N"+N\ g(c,). (25)
55, Veo o
§D *ﬂ@Ag@q;@D@ DenotingN', /N by n;, this yields
ﬁ@ my;1=m—2n9(28n)
s B ¥
oot e 2 2 2 ‘ ' ‘ =m—(1+m)gl(1-0)(1+m)]. (26)
0.96 0.98 1.00 1.02 1.04
B Keepingm positive, one would get instead of Ed.1)
M oth tmt-2m? 27)
FIG. 5. Integrated relaxation time plotted versus3 for differ- dl — smit=3zm. (
ent system sizes in the vicinity of the bulk critical temperature
Bc=1. Going over the previous calculatigiqgs.(11)—(14)] one

gets the same fixed point, the critical exponents do not
although the slope is the same as in the susceptibility casehange, and only a factgr multiplies the prefactor in the
the shift is much larger, i.e., the amplitude is larger. expression forr. That is,

For reasonable sizes of the systemisch as the sizes that
could be treated with computational power available tp us
one cannot neglect this shift. For example, calculatin@s
well as any other quantifyfor different system sizest
T()(=1) and trying a fit of the form

FSWI_ 1 Sw

s
This result shows that flipping the spanning cluster consti-
tutes the central component of the relaxation process. More-
over, it shows that flipping small clusters together with the
flip of the spanning cluster does not help the relaxation at all.
7(To())=L7? We turn now to Wolff dynamics and calculaté’(3) in
the thermodynamic limit, foT >T.. We calculater in two
. ) steps. In the first step we calculatf, the relaxation time
|ntro'duces some systematlp errors. measured using every single cluster update as one unit of
Figure 6 presents the first measuremént our knowl-  time. In the second step, we normalize these Wolff time units
edgg of a scaling function forr. The theoretically derived tq regular time units l spins are accessed or updated in a
valuez=1 was used. The evident data collapse indicates @jngle regular unit of time To achieve this normalization we
good fit to the scaling form presented in Eg0) and to the  mytiply the time measured in Wolff time units by the ratio
predictedz. of the average cluster siZ€) to the system siza\.
To calculater?’ note that

—_—— N N
10 o x 300k | T\éV: TSWl_A_: % ’TSW""
v 160k C C
a 100k sw sw
o8 | + 70K | L Wi N7 T
© 40k =W =~ (29)

5 2 o 20k gN, (1+mjg g

& Y .

08 r 3 Sy i whereC=gN is the size of the macroscopic cluster. To un-
T § i derstand the leftmost equality note that every cluster update
04 - ] g 1 of the Wolff procedure has a chance ©fN to hit the mac-

F D roscopic cluster. The rest of the cluster updates are irrelevant
o2 | ,j | in the thermodynamics limit. When normalized to regular
| o units of whole lattice update we get
] 6 0 a0 ® ¢
0.0 1 1 1 1 | | | | | W_ W<C>
-10.0 -8.0 60 40 -20 00 20 40 60 80 100 ST (29

ABL2
where(C) is the average cluster size in the Wolff procedure.

FIG. 6. Scaling function for the integrated relaxation tifiej. We turn now to calculat¢C), using the theory of random
(20)]. The valuez=1 was used for collapsing the data of Fig. 5. graphs[12]. For theN_ partc<1 and the cluster size dis-
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tribution has only “small clusters” with average cluster size
r,=0(1). For theN, partc>1 and the cluster size distri-

bution has two components. The first component is that of

“small clusters” with average cluster sizg=0(1) and the

second component is a single spanning cluster, whose size

depends linearly upoN , with sizeg(c )N, . Therefore

(€)_1

N N

N_ N,
NN

P(W)W]

w=cluster size=N

1[N. N,
NIt W{[l—g(m)]rz

+g(c)[g(c)NL]}

In the limit N— o, the first two terms vanish and the leading
term is (N.. /N)?g2. Thus we arrive at

(C) (1+m)’g®> ¢

N 4 4 (30

Combining Eqs(14), (28), and(29), we find that

W~ SWg(c ) (1+m)/d=SVg[(1—t)(1+m)](1+m)/4.

(31
Using Eqg.(4) we expandy to obtain
W 7SW2(—t+ m—tm)(1+m)/d~ 7"V"m/2
3
~ g( —t)"¥2\3(~t)Y%2~0.75=const. (32

Thus we have shown that" does not depend dnand hence
z=0 forT<T,.

V. NUMERICAL RESULTS (WOLFF DYNAMICS )

The Monte Carlo simulations were carried out using the

algorithm described in Sec. Ill, growing only the first cluster.
Systems that contaitN=(2x 10" —(3x 10°) spins were
simulated. The number of cluster flips wax 20° for each
run. The first 18 configurations of each simulation were
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FIG. 7. Wolff integrated relaxation time" plotted versugs for
different system sizes in the vicinity of the bulk critical temperature

Bc=1.

VI. SUMMARY AND CONCLUSIONS

Cluster algorithms constitute a significant advance in
computational physics. Their associated dynamics is charac-
terized by critical exponents that differ from those of stan-
dard methods. Very few exact results have so far been de-
rived regarding these exponents.

In the present work we addressed the issue of the classical
limit for the dynamic exponents of two cluster algorithms.
For the Swendsen-Wang algorithm we fourw 1; our ana-
Iytical derivation of this result is based on rigorous results
from the theory of random graphs. Since the proof applies
only for the low-temperature phase, we measured the relax-
ation time 75, using an implementation of the SW algo-
rithm adapted for fully connected graphspth above and
below T.. We established the scaling behaviorst'(t,L)
by demonstrating rather conclusive data collapse. Previous

v 160K -

discarded in order to ensure equilibration. As in the SW case,
the dynamical property measured was the correlation func-
tion of the absolute value of the time series of the magneti-
zation. The measurements were done after every four cluster
updates. From the correlation function we calculated the in-
tegrated relaxation time. Finally, we normalized by the aver-
age cluster size as was measured during the simulation.

Figure 7 shows for different sizes of the system at vari-
ous temperatures. In order to get the scaling function we
performed data collapse far with the theoretical value of
z=0.

The results is shown in Fig. 8, in which one can see a very
good agreement with the scaling form presented at(Eg).

In addition, the asymptotic behavior is consistent with the FIG. 8. Scaling function for the integrated relaxation time Eq.
(20). The valuez=0 was used for collapsing the data of Fig. 7.

result of Eq.(32), valid for 8>, andL>1.
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