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The dynamic behavior of cluster algorithms is analyzed in the classical mean-field limit. Rigorous analytical
results belowTc establish that the dynamic exponent has the valuezSW51 for the Swendsen-Wang algorithm
andzW50 for the Wolff algorithm. An efficient Monte Carlo implementation is introduced, adapted for using
these algorithms for fully connected graphs. Extensive simulations both above and belowTc demonstrate
scaling and evaluate the finite-size scaling function by means of a rather impressive collapse of the data.
@S1063-651X~96!09608-0#

PACS number~s!: 05.50.1q, 75.40.Mg, 64.60.Ht

I. INTRODUCTION

In a series of seminal pioneering papers Fortuin and
Kasteleyn@1# established an important connection between
percolation problems and the related concept of clusters, on
the one hand, and various thermodynamic functions of Potts
spin models, on the other. These connections allow geomet-
ric interpretation of different properties of these systems that
play a central role in their critical behavior. For example, the
onset of spontaneous magnetization coincides with the ap-
pearance of an infinite cluster in the related percolation prob-
lem; the susceptibility is proportional to the mean cluster size
and the correlation length to a typical cluster’s radius.

Some years later Swendsen and Wang@2# used these
ideas in a way that constituted a breakthrough in a different
subfield of statistical physics: that of computer simulations
of systems in thermal equilibrium. They exploited the
Fourtuin-Kasteleyn mapping to define a very efficient Monte
Carlo algorithm that performs large-scale nonlocal moves by
flipping simultaneously entire clusters of spins. This dynam-
ics decreases the relaxation time to equilibrium while pre-
serving detailed balance and ergodicity. In this way one can
overcome~or at least significantly reduce! critical slowing
down at second-order phase transitions@3#. ‘‘Critical slow-
ing down’’ is a well-known phenomenon; the relaxation time
of a system diverges as the critical point is approached. The
manifestation of thisreal, physicaleffect on simulations is
that at criticality the typical time needed to produce a large
set of decorrelated configurations, which appear with the
proper Boltzmann weight, diverges with the system’s size.
Hence the standard local Metropolis-type Monte Carlo simu-
lation methods become inefficient.

A wide variety of cluster methods have been applied suc-
cessfully to many fields in physics~second-order phase tran-
sitions, disordered and frustrated systems, quantum field
theories, fermions in a gauge background, quantum gravity,
and more@4–11#!. In many cases a dramatic acceleration of
convergence to equilibrium was achieved. That is, if the
simulation of a system of~linear! sizeL is performed at the
critical point, the relaxation time behaves according to
t;Lzc where zc , the exponent associated with the cluster
algorithm is significantly less thanzlocal of the local methods.

So far only relatively few rigorous results have been de-
rived for cluster algorithms and the associated relaxation
times and exponents@4,6#. In this paper we consider the
well-known version of the Ising spin model for which the
mean field is the exact solution, that ofN→` spins, all
connected to each other. By analyzing this system one can
calculate the classical, mean-field value ofzc .

The mean-field Ising ferromagnet has been previously ex-
amined analytically and numerically by Ray, Tamayo, and
Klein ~RTK! @4#. Although the work presented here agrees
with the conclusions of RTK regarding the Swendsen-Wang
~SW! dynamics, it contains some improvement. First, the
derivation of the analytical results is improved by employing
the known exact results of Erdo¨s and Renyi@12# for highly
diluted random graphs instead of the approximation~used by
RTK! of a Bethe lattice with large coordination number. We
show that this technical improvement does not alter the re-
sults obtained@4# for SW dynamics. Second, we performed
simulations, introducing an efficient algorithm, that extend
those of RTK in the following aspects. RTK looked at the
relaxation timest of the magnetization autocorrelation func-
tion, measured at a single temperature (Tc of the infinite
system! versus the size of the system. In addition, they also
studied the temperature dependence oft belowTc at a single
value of the system size. Our simulations were done on
larger systems using longer running times; in addition, we
studied a wide range of system sizes and temperatures both
above and belowTc . Our analysis of the results is based on
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finite-size scaling; the relaxation times measured at various
temperatures and system sizes are presented using data col-
lapse, thereby also calculating numerically the corresponding
finite-size scaling function. This data collapse of course takes
into account the shift in the transition temperature as a func-
tion of the size of the system. It resolves the unexpected
result that RTK found puzzling, namely, that the slowing
down below the transition appeared to be enhanced in com-
parison to that at the transition. When the shift in the transi-
tion temperature is properly accounted for, this effect disap-
pears.

In addition, we present analytical and numerical results
for Wolff @11# dynamics with the conclusion that the relax-
ation times of the autocorrelation function depends on the
details of the global algorithm. However, the upper critical
dimension is hypothesized to be unaffected by the details of
the local or the global algorithm.

II. MODEL

The Hamiltonian of the fully connected Ising model is
defined by

H52
1

2N (
iÞ j51

N

SiSj , Si561. ~1!

The statics of this model is solved exactly, using a mean field
@13#. The result is a second-order phase transition atbc51,
with exponentsa50, n50.5, b50.5, andg51. The local
~single spin flip! dynamics of this model can also be solved
exactly using a mean-field approach resulting in~from here
we useb51/kT unless otherwise stated!

t~b!}~b2bc!
21.

Using the fact thatn50.5 @i.e., j}(b2bc)
21/2#, it is clear

that t}j2, giving

zlocal52.

The standard SW procedure as implemented for this
model is defined as follows. Let us assume that the system is
in a spin configuration$Si%, i51, . . . ,N. In each SW sweep
every bond is ‘‘activated’’~or frozen! with probability

Pf512expS 2
b

N
~11SiSj ! D . ~2!

A bond that is not frozen is called ‘‘deleted.’’ Frozen bonds
define connected clusters, to each of which a spin value
(61) is now assigned randomly, giving rise to the new spin
configuration. Then the procedure is repeated. The dynamics
of this SW procedure was studied for the fully connected
model by Ray, Tamaya, and Klein@4#, who showed that
zSW51.

We present now a different derivation of this result: one
which utilizes exact results from graph theory. In order to get
better insight into the percolation properties of the fully con-
nected model let us introduce a few previously known facts
about highly diluted graphs@12#. These are relevant to our
problem since forN@1 the freezing probabilityPf is very

small and the SW procedure generates precisely the highly
diluted graphs to which we now turn.

Consider a graph ofN nodes; on all links connecting pairs
of nodesi , j place independent random variablesJi j , taken
from the probability distribution

P~Ji j !5~12c/N!d~Ji j !1~c/N!d~Ji j21!, ~3!

where the average connectivityc is taken to beO(1). The
resulting highly diluted graph has finite connectivity; in the
thermodynamic limit the probability that a node has connec-
tivity k ~i.e., has nonvanishing link variablesJi j with k other
nodes! follows the Poisson distribution

P~k!5ckexp~2c!/k!.

Many geometric properties of this diluted graph are well
understood@12,14,15#. In particular, the graph undergoes a
percolation transition atc51. That is, the number of nodes
that belong to the largest connected cluster is ofO(logN) for
c,1,O(N2/3) at c51, andO(N) for c.1. In this percolat-
ing regime the size of the largest cluster isgN, where the
parameterg is the solution of the equation@14#

g512e2cg

or

ln~12g!5cg.

Assuming that forc511d andd!1 one hasg!1, we get

cg2g2g2/22g3/350

and therefore

2g213g26d50,

which yields

g~11d!52d2 8
3 d2. ~4!

After this aside on random dilute graphs we return to the
SW dynamics for our fully connected Ising spin model.
Since the spins are fully connected, a configuration is fully
parametrized byN1 , the number of positive valued spins, or
by its magnetization

m5~N12N2!/N,

whereN25N2N1 . The dynamics is therefore completely
characterized by specifying the value of eitherN1 orm after
each Monte Carlo sweep. Every SW sweep can be thought of
as consisting of two steps. In the first step the spins are
divided into two groups, one of positive spins~all the spins
with Si511) and the other negative~spins withSi521).
UsingPf of ~2! we first note that all the links connecting any
positive spin to any negative one are deleted. The positive
~negative! group contains

N65
N

2
~16m!
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spins. Without loss of generality, we assume that
N1.N2 .

In the second step, each group is examined independently.
The internal links within a group are activated with the prob-
ability Pf512exp(22b/N). Each group can be thought of
now as a random graph with effective connectivity

c65PfN6'
2bN6

N
. ~5!

Denoting byt the deviation from criticality,b512t ~recall
that bc51), we can write for the larger~positive! group of
spins

c15~12t !~11m!. ~6!

We can now view the act of freezing a bond as choosing
Ji j51 in the generation of the dilute graph discussed above.
For that problem, as was mentioned previously,c51 is a
critical value. Therefore, in the disordered phase of our spin
model t.0 andb,bc so that bothc1 ,c2,1 and the SW
freeze-delete procedure creates only small~nonmacroscopic!
clusters. On the other hand, at temperatures just below criti-
cality, i.e., whent,0, we havec1.1 but c2,1. Hence
only onemacroscopic cluster~of positive spins!, whose size
is proportional to the lattice size, is generated, while the rest
of the clusters are small.

Flipping of this single macroscopic cluster is the domi-
nant element of the dynamics. The rest of the clusters are
small—there areO(N) of them—and therefore the extent
that their flip influences the magnetization is negligible com-
pared to that of the large cluster.

In what follows we derive recursion forN1
l andml the

values that the number of the majority spins and the magne-
tization take afterl steps of the SW procedure. We use the
notationN1 , but mean the number of spins in the state with
majority ~even when they are negative!.

The small clusters become61 with probability 1/2 after a
sweep: neglecting fluctuations of their contribution and as-
suming that the single large spanning cluster was and re-
mains positive, we can write

N1
l115 1

2 N2
l 1 1

2 @N1
l 2N1

l g~c1!#1N1
l g~c1!, ~7!

N2
l115 1

2 N2
l 1 1

2 @N1
l 2N1

l g~c1!#. ~8!

Denotingnl5N1
l /N, Eqs.~7! and ~8! can be rewritten as a

recursion for the magnetization:

ml115nlg~2bnl !5
11ml

2
g@~12t !~11ml !#. ~9!

For simplicity we keepm positive ~or, in other words, our
recursion is actually forumu).

Near the transition the argument of the functiong is near
its critical value and we can identifyd @see Eq.~4!# by

d52t1ml2tml .

Equation~4! is now given~up to terms of ordert3/2) by

ml115
11ml

2
@2~2t1ml2tml !2 8

3 ~ml
22tml !#

5ml2t1 2
3 mlt2

1
3 ml

2 , ~10!

which leads to the differential form

dm

dl
52t1 2

3 mlt2
1
3 ml

2 ~11!

wherel , the discrete index of the sweep, has become a con-
tinuous ‘‘time.’’ For t,0 Eq. ~11! has a stationary point at

m!5~23t !1/2. ~12!

Near this point we write

m5m!1e

and linearize Eq.~11! in e:

de

dl
5 2

3 et2 2
3 ml

!e5 2
3 et2

2

A3
e~2t !1/2. ~13!

For utu!1 the (2t)1/2 term is dominant so one can conclude
that relaxation is dominated by

e}expF2 lY S 2

A3 ~2t !1/2D G ,
and therefore in the ordered phase we find the relaxation time

tSW5
A3
2

~2t !21/2. ~14!

Using the definition

t5~2t !2nz

yields our result for the mean-field value of the dynamic
exponent of the Swendsen-Wang procedure

zSW51.

III. NUMERICAL RESULTS

A. Algorithm

The standard version@2# of the SW algorithm visits, dur-
ing a single sweep, each bond once and takes a freeze or
delete decision@16#. The fully connected system@Eq. ~1!#
containsN spins andN(N21)/2 links; consequently the
usual SW algorithm requiresO(N2) operations for one
sweep of the system. For our choice ofPf @Eq. ~2!#, how-
ever, only a very small fraction of bonds is eventually fro-
zen: even though every spin hasO(N) links, onlyO(1) are
activated. Moreover, as explained in the Introduction, in the
fully connected model the only relevant parameter that de-
termines the system’s state is its magnetization, orN1 .
Hence, to get the new configurationafter the SW sweep, all
we have to determine is the new value ofN1 . To do this we
do not have to scan allO(N) bonds of a certain spin; rather,
when the algorithm ‘‘visits’’ a new spin that belongs to a
cluster, it suffices to use the binomial distribution to deter-
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mine the number of activated bonds it has~i.e., the number
of new members of the cluster!.

Therefore the SW algorithm can be implemented for the
fully connected model by manipulating a fewnumbers, in-
stead of the values taken by the spins. This approach simpli-
fies the algorithm, is much more efficient, and uses a very
small memory.

We adopted the spirit of the Wolff algorithm to grow all
SW clusters during a sweep. At a given moment we know
the number of spins that have been assigned to our presently
growing cluster. New spins that have been added to the clus-
ter have to be tested for the number of frozen bonds connect-
ing them tofree spins~that do not yet belong to any cluster
and have the same sign as the presently growing cluster and
hence are candidates for joining it!. The spins that are known
to belong to the cluster but have not yet been tested are in a
‘‘stack.’’ As a cluster is growing, the algorithm tracks and
modifies the following parameters:Nc, the number of spins
in the growing cluster;Ns the number of spin in the stack;
andNf the number of ‘‘free spins.’’ A SW sweep starts at a
configuration withN1 ‘‘up’’ spins andN2 ‘‘down’’ spins.
Say we start to generate clusters of the up spins. The follow-
ing steps are taken.

~i! Assign one spin to the growing cluster: set
Nc5Ns51 andNf5N121.

~ii ! Test the spin: that is, using the binomial distribution,
determineNadd, the number of frozen links our spin will get,
connecting it to presently free spins:

Prob~Nadd!5S Nf

Nadd
DPf

Nadd~12Pf !
Nf2Nadd. ~15!

~iii ! Update
Nc5Nc1Nadd,
Ns5Ns1Nadd21,
Nf5Nf2Nadd.
~iv! Perform another test~as long asNs.0) using step

~ii !. Repeat~ii !–~iv! until the stack is empty (Ns50). Con-
struction of the cluster has now been completed.

~v! Flip the cluster with probability12. If the cluster has
flipped, the value of the magnetization changes:

M→M22Nc .

~vi! ResetNc51,Ns51, andNf5Nf21 and repeat~ii !–
~vi! to construct new clusters, until there are no more free
spins (Nf50).

~vii ! Go to the second component~of down spins! and
apply ~i!–~vi! with N2 . Note that now when the cluster flips
the magnetizationincreasesby 2Nc .

Note that all the operations of our algorithm are on a few
numbers, namely, we do not really define spins, just manipu-
late a few counters that were defined above. For the Wolff
version one can apply the same algorithm and grow only the
first cluster; the decision of starting it from an up or down
spin as seed is done at random~with probability proportional
to the number of up or down spins!.

B. Finite-size scaling analysis

Finite-size scaling is a standard method@17,18# to extract
critical indices from numerical data obtained by simulating

finite systems of linear sizeL. Denote byt the reduced tem-
perature variable and byB a thermodynamic quantity that
exhibits singular behavior in theL→` limit, characterized
by the exponentu:

B}t2u. ~16!

For a finite system clearlyB is an analytic function oft and
the finite-size scaling function exhibits a crossover; whent is
such that the correlation lengthj;t2n is much smaller than
the system sizeL the function behaves like~16!; in the
L→` limit all dependence onL should disappear. On the
other hand, forj<L the finite-size effects wipe the singular-
ity out.

The scaling hypothesis@17# asserts that the crossover
scaling function depends onL only through the ratioL/j and
one expects the form

B~ t,L !5Lu/n f ~L/j!5ju/ng~L/j!. ~17!

This scaling form includes implicitly the finite-size shift of
Tc(L), which is defined by the temperature at which the
measured quantity has a peak. The size of this shift generally
has the form

uTc~L !2Tc~`!u}L1/n. ~18!

The specific scaling functions that we consider in this paper
are, for the susceptibility,

x~ t,L !5Lg/n f ~ tL1/n! ~19!

and, for the relaxation time,

t~ t,L !5Lzf ~ tL1/n!. ~20!

C. Details of the simulations

The Monte Carlo simulations were carried out with the
algorithm described above, for systems that contain
N51042(33105) spins. The number of Monte Carlo
sweeps per spin was 105. The first 104 configurations of the
simulation~at list 500 times the relaxation time itself! were
discarded in order to ensure that the system reached equilib-
rium.

The static equilibrium property that we measured was

x85bN~^m2&2^umu&2!, ~21!

which is proportional to the ‘‘real’’ susceptibilityx @7#. The
reason for this choice is that in finite systems, especially with
cluster dynamics, the quantity^m2&2^m&2 has no peak at all
and the measured value increases monotonically asT de-
creases. The reason is thatm changes sign frequently and
thereforê m&;0. The method that determinesx by measur-
ing the size of the SW clusters@11# also yields no peak.

To demonstrate the quality of our numerical data we
present in Fig. 1 the susceptibilityx, as obtained from simu-
lations and exact evaluation for a system ofN520 000 spins.
The exact result was derived by calculating^m2& and ^umu&
in ~21!, using the analytic expressions for the Boltzmann and
entropic weights of all configurations withN1 up spins~and
summing overN1).
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Figure 2 shows the susceptibility for different system
sizesL as a function of temperature. One can see the large
shift of the peak position for different sizes of the system.

The most striking manifestation of scaling isdata col-
lapse. The product xL2g/n should depend only on
L/j'LADb, where Db5b21. This can be seen very
clearly in Fig. 3, where the mean-field exponentsg/n52 and
n51/2 were used@we plotted the scaling function versus
(L/j)2#. In addition to presenting the scaling function and
verification of the scaling form, the excellent data collapse
that can be seen verifies the accuracy of our numerical simu-
lations. The shift of the effectiveTc(L) is studied in Fig. 4;
indeed one can see that the size of the shift agrees very well
with Eq. ~18!, with the theoretical mean field valuen5 1

2.
The dynamic property that we measured is the time-

dependent correlation function of the absolute value of the
magnetization. The measurements were taken after every

sweep. We considered the normalized correlation function of
the absolute value of the magnetization

r~ t !5
^um~ t8!m~ t81t !u&2^umu&2

^m2&2^umu&2
, ~22!

for which the integrated relaxation time, defined by

t int5
1
2 1(

t51

`

r~ t !, ~23!

was calculated.
Figure 5 showst for different sizes of the system at vari-

ous temperatures. As in the case of the susceptibility, one
can see the large shift of the peak of the scaling function for
different system sizes. Figure 4 contains also the scaling
analysis of this shift as a function ofL: again, the result
agrees very well with the theoretical prediction. Note that,

FIG. 4. Shift of the peakDbmax5bmax(L)21 of the susceptibil-
ity x and of the integrated relaxation timet plotted versus
L5N1/4. The nonlinear least-squares fit yielded the values
1/n51.9860.12 forx and 1/n52.0160.05 for t.

FIG. 1. Susceptibilityx vs b for a system ofN520 000 spins.
The solid line and squares represent exact results and the values
obtained by simulations, respectively.

FIG. 2. Susceptibilityx versusb for different system sizes,
measured in the vicinity of the bulk critical temperaturebc51.

FIG. 3. Susceptibility scaling function@Eq. ~19!#. The mean-
field value ofg/n52 was used for collapsing the data of Fig. 2.
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although the slope is the same as in the susceptibility case,
the shift is much larger, i.e., the amplitude is larger.

For reasonable sizes of the systems~such as the sizes that
could be treated with computational power available to us!
one cannot neglect this shift. For example, calculatingt ~as
well as any other quantity! for different system sizesat
Tc(`)(51) and trying a fit of the form

t„Tc~`!…5Lz

introduces some systematic errors.
Figure 6 presents the first measurement~to our knowl-

edge! of a scaling function fort. The theoretically derived
value z51 was used. The evident data collapse indicates a
good fit to the scaling form presented in Eq.~20! and to the
predictedz.

IV. WOLFF DYNAMICS

Let us start with a remark about SW dynamics. Going
back to Eq.~8! one can see that for a particular version of
SW algorithm, in which one flips only the spanning cluster,
the following equations are obtained:

N1
l115N1

l 2N1
l g~c1!, ~24!

N2
l115N2

l 1N1
l g~c1!. ~25!

DenotingN1
l /N by nl , this yields

ml115ml22nlg~2bnl !

5ml2~11ml !g@~12t !~11ml !#. ~26!

Keepingm positive, one would get instead of Eq.~11!

dm

dl
522t1 4

3 mlt2
2
3 ml

2 . ~27!

Going over the previous calculation@Eqs.~11!–~14!# one
gets the same fixed point, the critical exponents do not
change, and only a factor12 multiplies the prefactor in the
expression fort. That is,

tSW15 1
2 tSW.

This result shows that flipping the spanning cluster consti-
tutes the central component of the relaxation process. More-
over, it shows that flipping small clusters together with the
flip of the spanning cluster does not help the relaxation at all.

We turn now to Wolff dynamics and calculatetW(b) in
the thermodynamic limit, forT.Tc . We calculatetW in two
steps. In the first step we calculatetc

W , the relaxation time
measured using every single cluster update as one unit of
time. In the second step, we normalize these Wolff time units
to regular time units (N spins are accessed or updated in a
single regular unit of time!. To achieve this normalization we
multiply the time measured in Wolff time units by the ratio
of the average cluster size^C& to the system sizeN.

To calculatetc
W note that

tc
W5tSW1

N

Ĉ
5 1

2 tSW
N

Ĉ

5 1
2 tSW

1

g

N

N1
5

tSW

~11m!g
'

tSW

g
, ~28!

whereĈ5gN is the size of the macroscopic cluster. To un-
derstand the leftmost equality note that every cluster update
of the Wolff procedure has a chance ofĈ/N to hit the mac-
roscopic cluster. The rest of the cluster updates are irrelevant
in the thermodynamics limit. When normalized to regular
units of whole lattice update we get

tW5tc
W ^C&

N
, ~29!

where^C& is the average cluster size in the Wolff procedure.
We turn now to calculatêC&, using the theory of random

graphs@12#. For theN2 part c,1 and the cluster size dis-

FIG. 5. Integrated relaxation timet plotted versusb for differ-
ent system sizes in the vicinity of the bulk critical temperature
bc51.

FIG. 6. Scaling function for the integrated relaxation time@Eq.
~20!#. The valuez51 was used for collapsing the data of Fig. 5 .
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tribution has only ‘‘small clusters’’ with average cluster size
r 15O(1). For theN1 part c.1 and the cluster size distri-
bution has two components. The first component is that of
‘‘small clusters’’ with average cluster sizer 25O(1) and the
second component is a single spanning cluster, whose size
depends linearly uponN1 with sizeg(c1)N1 . Therefore

^C&
N

5
1

N FN2

N
r 11

N1

N H (
w5cluster sizePN1

P~w!wJ G
'
1

N FN2

N
r 11

N1

N
$@12g~c1!#r 2

1g~c1!@g~c1!N1#%G .
In the limit N→`, the first two terms vanish and the leading
term is (N1 /N)2g2. Thus we arrive at

^C&
N

'
~11m!2g2

4
'
g2

4
. ~30!

Combining Eqs.~14!, ~28!, and~29!, we find that

tW'tSWg~c1!~11m!/45tSWg@~12t !~11m!#~11m!/4.
~31!

Using Eq.~4! we expandg to obtain

tW'tSW2~2t1m2tm!~11m!/4'tSWm/2

'
A3
2

~2t !21/2A3~2t !1/2/2'0.755const. ~32!

Thus we have shown thattW does not depend ont and hence
z50 for T,Tc .

V. NUMERICAL RESULTS „WOLFF DYNAMICS …

The Monte Carlo simulations were carried out using the
algorithm described in Sec. III, growing only the first cluster.
Systems that containN5(23104)2(33105) spins were
simulated. The number of cluster flips was 23106 for each
run. The first 105 configurations of each simulation were
discarded in order to ensure equilibration. As in the SW case,
the dynamical property measured was the correlation func-
tion of the absolute value of the time series of the magneti-
zation. The measurements were done after every four cluster
updates. From the correlation function we calculated the in-
tegrated relaxation time. Finally, we normalized by the aver-
age cluster size as was measured during the simulation.

Figure 7 showst for different sizes of the system at vari-
ous temperatures. In order to get the scaling function we
performed data collapse fort with the theoretical value of
z50.

The results is shown in Fig. 8, in which one can see a very
good agreement with the scaling form presented at Eq.~20!.
In addition, the asymptotic behavior is consistent with the
result of Eq.~32!, valid for b.bc andL@1.

VI. SUMMARY AND CONCLUSIONS

Cluster algorithms constitute a significant advance in
computational physics. Their associated dynamics is charac-
terized by critical exponents that differ from those of stan-
dard methods. Very few exact results have so far been de-
rived regarding these exponents.

In the present work we addressed the issue of the classical
limit for the dynamic exponents of two cluster algorithms.
For the Swendsen-Wang algorithm we foundz51; our ana-
lytical derivation of this result is based on rigorous results
from the theory of random graphs. Since the proof applies
only for the low-temperature phase, we measured the relax-
ation time tSW, using an implementation of the SW algo-
rithm adapted for fully connected graphs,both above and
below Tc . We established the scaling behavior oftSW(t,L)
by demonstrating rather conclusive data collapse. Previous

FIG. 7. Wolff integrated relaxation timetW plotted versusb for
different system sizes in the vicinity of the bulk critical temperature
bc51.

FIG. 8. Scaling function for the integrated relaxation time Eq.
~20!. The valuez50 was used for collapsing the data of Fig. 7.
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work used a Bethe lattice approximation for the analytic
derivation and did not present the full scaling function for
the relaxation time.

For the single-cluster algorithm of Wolff we have shown
that z50 and presented numerical evidence, again obtained
both above and belowTc . The scaling function was found
numerically and data collapse was demonstrated.
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